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ABSTRACT  

This paper introduces a cost-effective, data-driven framework for the maintenance of 

photovoltaic (PV) systems in Hong Kong (HK), addressing the surge in installations 

following the 2017 FiT Scheme. Although PV systems are generally low-maintenance, 

regular upkeep is vital due to defects that can impair output and safety. Current reactive 

maintenance practices focus only on electrical components and overlook 

comprehensive monitoring, which is insufficient to given challenges such as 

degradation and environmental impacts. Our framework utilizes existing network 

infrastructure and open data from the HK Observatory to offer a scalable solution for 

urban areas. By integrating local and regional weather data, and PV parameters, we 

achieve centralized cloud monitoring and anomaly detection without extra installation. 

A GRU model, optimized through tailored by prediction timeframes, feature 

engineering, and hyperparameter tuning. This model reduces the mean absolute error 

by 30% and maintains a maximum weekly error of 1.85%, surpassing traditional 

models. A dynamic alarm method enhances fault detection, ensuring rapid, accurate 

anomaly identification. Validation in real-world scenarios confirms its effectiveness. 

The cloud-based design allows quick deployment across similar urban sites, supporting 

sustainable PV management and maximizing solar energy generation in HK. 
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INTRODUCTION 

Climate change is a pressing global issue requiring urgent action. In line with the Paris 

Agreement, governments are setting zero-carbon targets. HK's Climate Action Plan 

2050 aims to cut carbon emissions and achieve net-zero electricity by phasing out coal, 

boosting renewable energy, and exploring new sources. The city targets a renewable 

energy share of 7.5% to 10% by 2035, increasing to 15% thereafter, with a goal of net-

zero electricity before 2050. Solar energy is critical to this transition, with PV 

installations expected to rise due to the Feed-in Tariff Scheme and government 
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initiatives. Launched in 2017, the Scheme encourages renewable energy by allowing 

individuals and businesses to sell renewable power at premium rates. This has resulted 

in over 23,000 applications for PV installations, highlighting solar energy's growing 

importance.  

 

NEED FOR MAINTENANCE OF PV SYSTEM IN HK 

PV systems typically last over 25 years, but regular maintenance is crucial due to 

degradation and external damage. Issues include power degradation, electrical 

corrosion, cell breakage, and delamination. (Di Tommaso et al., 2022; Bendale et al., 

2023). External factors like shading, soiling, and rooftop slope can reduce power 

generation, while internal issues may lead to hotspots, causing overheating and 

potential damage, including fires. Research indicates over 40% of systems experience 

degradation (Mgonja & Saidi, 2017), with energy losses around 10% (Drif et al., 2008), 

underscoring the need for continuous monitoring and maintenance. In HK, PV systems 

currently use a reactive maintenance approach due to their small and distributed nature. 

Although preventive or predictive maintenance tools like thermal imaging and 

proprietary monitoring exist, they are not preferred due to high resource requirements 

and HK-specific challenges such as urban density and shading from tall buildings. To 

address these issues, cost-effective monitoring solutions are needed. This study 

proposes a framework using existing data and an AI model tailored to HK’s PV 

installations to enhance operation and maximize power generation. 

 

LITERATURE OF ADVANCE MAINTENANCE APPROACH 

There are several advanced approaches address performance evaluation and fault 

detection which can be categorized into three dimensions: Electrical Parameter 

Monitoring, Visual Analysis, and Power Generation Comparison (Bosman et al., 2020). 

 

Electrical Parameter Monitoring involves analyzing real-time electrical data like 

voltage and current, providing immediate insights into system performance. It enables 

quick response to issues such as module or connection failures. However, the high cost 

of sensing infrastructure can be prohibitive for the use in HK. While effective for short-

term issues, it might not detect long-term degradation or complex problems. 

Innovations include a simulation program for I-V curve analysis under partial shading 

(Gallardo-Saavedra & Karlsson, 2018) and AC impedance spectroscopy for fault 

detection beyond traditional I-V characteristics (Bendale et al., 2023). A low-cost, real-

time supervision method using Voc-Isc curves for early fault detection has also been 

proposed (García et al., 2022). 

 

Visual Analysis process image to detect physical defects in PV modules, such as cracks 

or hotspots, revealing issues not apparent through electrical monitoring. For example, 

thermal imaging software enhances fault detection and system efficiency (Constantin 

et al., 2023). However, regular site visits are time-consuming and costly, especially for 

distributed sites. Manual inspections also risk human error and may not fully assess 

system performance. To overcome these limitations, advanced techniques integrate 



CNN and UAVs to automate image analysis (Bendale et al., 2023). This reduces manual 

inspections and efficiently accesses hard-to-reach areas. Another study uses YOLOv3 

for similar purposes (Di Tommaso et al., 2022). Research correlating image data with 

power loss offers deeper insights (Cavieres et al., 2022). These advancements provide 

valuable insights but still face limitations in HK due to the distributed nature of systems.  

 

Power Generation Comparison approach leverages historical data and weather 

conditions, to estimate expected PV output. Analyzing deviations between predicted 

and actual outputs identifies suboptimal performance or potential faults. The capital 

investment and OPEX are minimal when compared to the others while offering 

desirable alarm, allowing operators to proactively address performance issues. Recent 

studies use AI models like ANN and LSTM to predict solar irradiation, temperature, 

and corresponding power generation as they can handle learn complex data patterns, 

(De Benedetti et al., 2018). LSTM models, capturing long-term dependencies in time 

series data, are valuable for accurate estimation. Studies have combined LSTM with K-

means clustering for daily power output predictions and employed edge-computing 

systems for city-level applications (Vicente-Gabriel et al., 2021). After all, the power 

generation comparison approach is getting more and more attention as it is more 

suitable for the city-level application utilizing the public data. 

 

APPLICATION OF ADVANCE MAINTENANCE APPROACH IN HK 

Given the feasibility of AI models for power generation comparison, their suitability 

for PV monitoring in HK requires investigation due to unique geographical challenges. 

This study develops an approach tailored to these conditions. The goal is to identify the 

most suitable model for PV monitoring, enhancing performance evaluation and 

maintenance practices, and supporting sustainable energy. 

 

The Electrical and Mechanical Services Department (EMSD) maintains government 

buildings, 30 numbers of PV systems remotely connected to the Regional Digital 

Control Centre (RDCC) at Kowloon Bay via Government Wide IoT Network (GWIN). 

This paper proposes an AI model utilizing the existing infrastructure and cloud-based 

RDCC to detect anomalies without additional investment. A specific site was selected 

for detailed analysis due to its extensive dataset, serving as a representative case study 

of the anomaly detection of PV system in HK. There are 30 thin-film PV panels 

arranged in three strings, each linked to the same inverter with a total rated output of 

9750W. According to minimal requirement in government building, sensors for 

electrical signals, ambient temperature and solar irradiance are installed.  

 
Figure 1. PV system installed in the site and related sensor 



In addition to local data, regional meteorological data from the HK Observatory (HKO) 

is considered to enhance solar energy generation predictions. HK's meteorological 

network includes 50 automatic weather stations, with a density of 22.29 stations/m2. 

Solar radiation data is available at King's Park and HK International Airport (HKO, 

2024), emphasizing the need for strategic data integration.  

 

DATA PREPARATION AND EXPLORATION 

Data cleansing ensures integrity using domain-specific and mathematical methods to 

identify anomalies. Approximately 0.2043% of the data showed issues such as excess 

power generation and missing points. Surplus data was removed, and interpolation 

filled gaps to ensure dataset accuracy. After cleansing, detailed exploration enhanced 

understanding of dataset characteristics and revealing other abnormalities. Correlation 

heatmap indicated a strong correlation between solar irradiation and power output 

(coefficient 0.98), consistent with previous research (Arshi et al., 2019). This 

underscores solar irradiation's significant influence on PV system performance. 

 

Figure 3. Boxplot of monthly energy generation and correlation map of all features 

 

Baseline Model and Selection of Model 

A baseline model, done by Castillo-Rojas et al. (2023), employs a Hybrid Model of 

Recurrent and Shallow Neural Networks using weather data, achieving an MSE of 0.03, 

MAE of 0.09, and R² of 0.96, serving as a normalized benchmark. Five models are 

selected for further review and development which are Random Forest (RF), Gradient 

Boosting (GB), Long Short-Term Memory (LSTM), Artificial Neural Networks (ANN), 

Gated Recurrent Units (GRU). 

 

Evaluation of Model Performance 

To assess model performance, we used several evaluation metrics to understand 

accuracy. Standard metrics such as MSE, MAE, and R² serve as primary benchmarks. 

Additionally, Peak Absolute Percentage Error (PAPE) is introduced to capture the 

largest absolute difference between predicted and actual values, highlighting worst-case 

prediction scenarios. The study utilized 14 months of historical data, divided into an 

80% training set and a 20% testing set for model development. An additional 4 months 

of unseen data were reserved for independent validation, and 2 months for real-life 

application testing. Model predictions were compared with actual daily, weekly, and 

monthly power generation metrics.  



 
Figure 4. Data adopted for the study 

 

Enhancements to the Model 

Enhancement to the model was carried out to improve the accuracy of the five models 

to achieve the real-world applicability. Data analysis was first conducted to find the 

optimal time frame for generating alarms and the minimum sensor sampling frequency. 

The dataset, initially collected at 1-minute intervals, was resampled to 10 minutes, 1 

hour, and 1 day. During training stage, GB and RF outperformed deep learning models, 

with MSE, MAE, and R² values of 0.0016, 0.0191, and 0.9613, respectively, for the 10-

minute interval. However, transitioning to a 1-hour interval increased MSE by 31.25% 

and 13.09%.  In validation stage, models trained on 1-hour data significantly 

outperformed those using 10-minute intervals. RF was the top performer, achieving 

daily, weekly, and monthly MAE values of 4.11%, 2.75%, and 2.15%, showing 

improvements of 55.58%, 72.39%, and 78.74% over 10-minute data. No further 

enhancements were observed in resampling to daily. The 10-minute time frame offered 

a larger training dataset, enhancing performance in training stage but increasing 

overfitting risk during validation. Without regularization, 10-minute intervals may lack 

robustness with unseen data. To ensure real-world applicability, 1-hour time frame is 

adopted, balancing trend capture with robustness. 

 

Feature Engineering 

Feature engineering was employed to streamline input variables and identify key 

predictors to improve model accuracy. Findings indicated that local irradiance and 

regional rainfall were the most impactful inputs for predicting PV output power. 

Interestingly, these results diverged from the typical inverse relationship with panel 

temperature. This anomaly may stem from the use of a single installed temperature 

sensor inadequately representing actual site conditions. Regional weather data 

significantly affected MAE, leading to the exclusion of most data from the HKO, except 

rainfall. This exclusion improved model performance, likely due to the over 2-kilometer 

distance between the observatory and the test site. Greater improvements are 

anticipated with more localized data. In cases lacking local irradiance data, substituting 

with regional radiation and rainfall maintained acceptable performance, with an MAE 

of 12.61%. The best input features are local irradiance and rainfall.  

 

Table 2. Top three performing input features  

Input Features  Average MAE (%) 
Local Irradiance + Regional Rainfall 4.33 

Local Irradiance + Local Temperature  4.58 
All Local and Regional Data 7.45 

 



Regularization and Hyperparameter Tuning 

Deep learning models often face overfitting due to their complexity. To counter this, 

regularization techniques were implemented to improve generalization. Results showed 

slight performance enhancements. Specifically, L1 and L2 regularization improved the 

LSTM and GRU models during both training and validation, enhancing their 

generalization capabilities. However, improvements were not observed in the ANN. 

Hyperparameters are crucial for optimizing model performance, as they are not learned 

from the data. This study employed hyperparameter tuning to enhance predictive 

capabilities. Optuna, a popular optimization library, was used for machine learning 

models, while Random Search was applied to deep learning models. The tuning process 

involved systematically exploring various hyperparameter combinations to identify the 

optimal configuration for each model. 

 

Result and Discussion 

In the final stage, the PAPE was used as a direct measure of prediction accuracy, 

complementing the MAE. Initially, MSE outperformed MAE as a loss function, with 

improvements of 51.40%, 12.11%, and 20.69% for daily, weekly, and monthly time 

frames, respectively. After hyperparameter tuning, MSE generally enhanced model 

performance, notably in most models. MAE showed less consistent improvements, with 

only the LSTM model benefiting further. Ultimately, the GRU model, fine-tuned with 

Random Search and using MSE as lost function, proved most effective, achieving 

PAPE values of 23.04%, 1.85%, and 1.14% for daily, weekly, and monthly 

comparisons. The overall weekly result is very accurate for perform the task in 

detection of possible fault in individual PV panels.  

 

Alarm Settings and Generation 

Based on the best model developed with high accuracy in the weekly timeframe, any 

significant discrepancy between the actual measured and the predicted output will 

trigger an alarm to notify the Operation & Maintenance staff. Two alarm-setting 

approaches are compared. The first uses the weekly PAPE with a 50% safety margin, 

leading to delayed alarms, especially if faults occur later in the week. The second, more 

systematic approach, uses the 25th and 75th percentiles with the same offset, resulting 

in narrower limits. 

 

Table 3. Upper and Lower Alarm Setting of the two Approaches   

Alarm Limit Simple off set Off-set from percentiles 
Upper +2.78% 1.26% 
Lower -2.78% -2.96% 

 

Testing and Application of Models in Real-Case Scenarios 

The two alarm settings were tested on an additional two-month dataset, including a 

control fault case where output was lost in 1 of 30 panels, starting November 2. The 

simple offset approach generated an alarm on November 12, one-week post-fault. 

Conversely, the percentile offset approach triggered an alarm on November 5, within 

the same week as the fault, offering a more timely response.  



 

Figure 5. Alarm Generation By The Two Approach 

 

Conclusion 

This paper introduces a comprehensive framework for detecting abnormalities in PV 

systems using existing infrastructure, eliminating the need for additional installations. 

It proactively identifies and addresses potential operational issues, ensuring optimal 

performance and efficiency. The proposed GRU model demonstrates effective hourly 

prediction capabilities by leveraging key features such as local solar irradiation and 

regional rainfall data. Enhancements in time domain analysis, feature selection, metrics, 

regularization, and hyperparameter tuning have significantly improved model 

performance, outperforming the baseline model. 

 

Additionally, a statistical method for setting alarms enhances the detection of abnormal 

energy patterns, enabling timely intervention and maintenance to ensure smooth PV 

system operation. The trained model is stored on the RDCC cloud server, receiving live 

data from the site and HKO, and processes it weekly to generate alarms, notifying O&M 

staff of any abnormalities. The framework shows significant potential for expansion to 

other locations with minimal costs. Its versatility and scalability make it a promising 

tool for improving PV system operation and maintenance globally. By optimizing green 

energy generation, it aids the transition towards carbon neutrality, contributing to a 

sustainable and environmentally friendly future. 

 

Limitation and Future Work 

While the model shows promise, it has not been extensively tested on larger systems 

with over 100 panels. The reliance on a single local irradiation sensor suggests that a 

more sophisticated model is necessary for larger-scale applications. Additionally, the 

model struggles to provide accurate predictions for systems lacking a local solar 

irradiation sensor, a common issue in cost-constrained residential PV systems. Future 

work will focus on improving prediction accuracy for these cases. One approach is to 

embed the algorithm in a compact, cost-effective device for integration into systems 

without local sensors, enhancing their performance with predictive capabilities. 

Another strategy is to refine the model by interpolating regional weather data to 

estimate local conditions more accurately. This would allow for more precise 

predictions without direct local sensor data. Ongoing research in these areas will 

advance the model's applicability and accuracy across diverse PV systems and 

operational scenarios. 
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